CONFIGURATION GUIDE

Three-Phase Meter

CONTENTS

Three	Phase Meter Configuration Guide
Prefa	ce1
1.	Symbol interpretation 2
2.	Introduction
3.	Meter installation 3
4.	Setting Feed-in limitation of the inverters 5
5.	Check the installation results
6.	Communication8
7.	Display function14
8.	Troubleshooting 20
9.	Interface description 21

Preface

Table of adapted inverters

NO.	Product Type	Model
1	- Three-phase inverters (PV)	SOFAR 3-12KTL*-G3
2		SOFAR 15-24KTL*-G3
3		SOFAR 25-50KTL*-G3
4		SOFAR 60-80KTL*-G3
5		SOFAR 100-136KTL
6	Three-phase inverters (Energy Storage)	HYD 5-20KTL-3PH
7		ME 5-20KTL-3PH

Scope of application

This product manual describes the installation, electrical connection, debugging,

maintenance and troubleshooting of Three-Phase Meter.

Versions of the manual

Versions	Modify records	Time
V1.0	First Edition Release	2023.04.20

1.Symbol interpretation

Read the safety precautions in this manual carefully. If ignored, serious injury or death may result.

1 DANGER

Non-observance will result in death or serious injury.

· Follow the warnings in order to prevent death or serious injury!

Non-observance may result in death or serious injury.

• Follow the warnings in order to prevent serious injury!

Non-observance may result in minor injury.

• Follow the warnings in order to prevent injury!

ATTENTION

Non-observance may result in property damage!

• Follow the warnings in order to prevent damage to or destruction of the product.

NOTE

• Provides tips essential to the optimal operation of the product.

2. Introduction

This scheme is a 1-to-1 communication mode, and one set of electricity meter cannot correspond to multiple grid-connected inverters.

Туре	Model	Appearance	Reference Voltage	Frequency	Nominal Current	Adapted CT
Three-Phase Meter	DTSU666		3x230V/400V	50Hz/60Hz	1.5(6)A	HY94C5-200, 200Α, 2KV, -30~75℃, Φ24
					5(80A)	No need for external CT

3. Meter installation

DANGER

Please ensure installation with power off
Please select the correct power connection
Please connect in strict accordance with the wiring diagram

ATTENTION

·Please install in a suitable meter size distribution cabinet

3.1 The meter is installed on the DIN35 standard guide rail.

3.2 AC current Conductor Cross-sectional Area Range ≤16 mm2

3.3 RS485 cable

The meter communication is in RS485 communication mode, and the port rate can be set to 1200,2400,4800, and 9600 (default). The device communication address defaults to 01(please see instrument factory number or crystal display screen). For communication lines, shielded twisted pair wire shall be used, with copper net diameter not less than 0.5mm². When wiring, the communication line should be far away from strong cables or other strong electric fields, with a maximum transmission distance of 1200 meters.

3.4 Wiring diagram

Meter+CT

CT is installed between the load and the grid, CT with arrow with the arrow in the figure (arrow points to the grid). CT without an arrow, the direction of the arrow represents the direction of P1 (inverter) to P2 (power grid).

- Meter port 1: connected with A phase CT red line, and meter port 3 is connected with A phase CT black line.
- ② Meter port 2: connected to the phase A power grid power grid sampling.
- ③ Meter port 4: connected to B phase CT red line, and meter port 6 connects to B phase CT black line.
- ④ Meter port 5: connected to the B-phase power grid power grid sampling.
- ⑤ Meter port 7: connected to C phase CT red line, and meter port 9 is connected to C phase CT black line.
- 6 Meter port 8: connected to the phase C power grid power grid sampling.
- ⑦ Meter port 10: connected to the N-phase power grid power grid sampling.
- ⑧ Meter port 24: connected to inverter communication port RS485A (+), and meter port 25 is connected to inverter communication port RS485B (-).

4. Setting Feed-in limitation of the inverters

SOFAR Grid-tied Inverters have two button operation menus respectively.

4.1 Introduction of the button function (two buttons on the screen)

Parameter setting (long press \downarrow to enter the menu)	Long press \downarrow to enter
	1. Set the system time
	2. Clear up the power generation capacity
	3. Clear the event record
	4. Import the safety gauge parameters
	5. Switch on machine control
Some settings require a password	6. Set up the total power generation capacity
(the default password is 0001)	7. Set up the correspondence address
	8. Set the input mode
(The menu number varies slightly	9. Set language
according to different models.)	10. Set Feed-in limitation
	11. Logical interface
	12. Curve scan
	13. PCC Select
	14. Reflux Mode

1. If you only need to monitor the power, you don't need the Feed-in limitation function:

- 10. Set Feed-in limitation ->Disable
- 2. If you need to connect the meter to realize the Feed-in limitation function:
- 10. Set Feed-in limitation \rightarrow Reflux Enable \rightarrow ***KW
- 13. PCC select \rightarrow PCC Meter.
- 14. Reflux Mode \rightarrow CTR Total Power (The vector sum of three-phase current addition shall not exceed the Feed-in limitation power)

 \rightarrow CTR Phase Power(Single phase minimum load + Feed-in limitation power /3)

 \rightarrow CTR Selling Power(The current of output current (towards the power grid) shall not exceed the Feed-in limitation power)

When the three-phase load is balanced, the three modes have the same effect.

4.2 Introduction (four buttons on screen)

Advanced setting (back to the menu)	Press the OK key to enter
	1. Set the system time
	2. Clear up the power generation capacity
	3. Clear the event record
	4. Set up safety regulations for countries
	5. Switch on machine control
	6. Country setting
Some settings require a password	7. Settings, total power generation
(the default password is 0715)	8. Settings, correspondence address
	9. Set up, input mode
	10. Set up the language
	11. Set the startup parameters
	12. Set the safety gauge voltage
(The menu number varies slightly	13. Set the safety regulation frequency
according to different models.)	14. Set up the insulation impedance
	15. Set the reactive power
	16. Set up the active power and load reduction
	17. Set Feed-in limitation
	18.MPPT scan
	19. Start-up time setting
	20. Set Meter
	21. Logical interface
	22. Set the power ratio

- 1. If you only need to monitor the power, you don't need the Feed-in limitation function:
- 20. Set Feed-in Limitation→Disable
- 2. If you need to connect the meter to realize the Feed-in limitation function:
- 17. Set Feed-in limitation→Enable
- 20. Feed-in Power->***KW

5. Check the installation results

5.1 Direction of current

For the transformer access type, turn off the load, the power on the meter shows the forward power (Imp), open the load to turn off the inverter, the reverse power (Exp) on the meter represents the correct position and direction of the transformer; the power factor is close to 1 represents the transformer and the voltage line phase, otherwise check the phase correspondence.

For the direct access type, turn off the load, the power on the meter shows the forward power (Imp), open the load and turn off the inverter, and the reverse power (Exp) displayed on the meter means that the meter wiring direction is correct.

5.2 RS485 Communications

Open the meter enabling function on the inverter. When RS485 has abnormal communication, the inverter will report an abnormal communication fault. When encountering this fault, please check the RS485 wiring, and try to change the positive and negative to solve it.

6. Display function

The positive pulse indicator flashes when the meter is in a normal operating state (on duty). If the indicator light is not flashing or not on for a long time, check that the meter is wired correctly.

Each set of data is displayed for 5 seconds, and the display interface is shown below.

No.	Content	Description
01		Combined Active Energy =10000.00kWh
02	Imp. VVAh	Import Active Energy =10000.00kWh
03	Exp.	Export Active Energy =2345.67kWh
04		Protocol:
05		address =000000000001

Three-Phase Meter

No.	Content	Description
12		B Phase Current =5.001A
13	I C 5.002 A	C Phase Current =5.002A
14		Combine Phase Active Power=3.291kW
15		A Phase Active Power =1.090kW
16		B Phase Active Power =1.101kW
17		C Phase Active Power =1.100kW

ATTENTION

·Protocol: DL/T645-2007 display 4 and 5, Protocol: Modbus-RTU display 6 and 7.

•The above interface is used to show the meaning of the display content. Due to the different functions of the instrument, the display symbols will increase or decrease.

When RS485 communicating, the telephone sign will flashes.

6.1 Programming operation

Key description: "SET" key means "OK", or "Cursor shift" (when entering the number), "ESC" key means "exit", "key" "means" add ", because only the key can only" add ", not" subtract ", when you add the number to the maximum value, the number will start from 0. Enter a password (default: 701).

The meter can match different proportions of transformers. Before use, the current ratio should be set according to the transformer ratio (such as 100A: 5A transformer, 20 current ratio). For this equipment, our company has adjusted the current ratio before shipment. Set up to refer to the following figure.

Figure: Setting examples for current and potential transformer ratio

Figure: Setting examples for communication address and Baud Rate

7. Communication

Communication protocol: complied with the requirement of Modbus communication protocol. The following table is the common Modbus protocol address table.

NOTE

Modbus-RTU protocol read command is 03H, write command is 10H.

7.1 Modbus protocol address table

Parameter address	Parameter code	Instructions of parameters	Data type	Data length Word	R/W property	
Keyboard parameters (specific parameters see the instructions of programming parameters, the actual value with (*) parameter= communication parameter value × 0.1)						
0000Н	REV.	Version No.	16bit with signal	1	R/W	
0001H	UCode	Programming code codE (1 \sim 9999)	16bit with signal	1	R/W	
0002H	ClrE	Power reset CLr.E (1: energy clear)	16bit with signal	1	R/W	
0003H	net	Network selection (0: three phase four wire,1: three phase three wire)	16bit with signal	1	R/W	
0006H	lrAt	Current transformer rate IrAt (1~9999)	16bit with signal	1	R/W	
0007H	UrAt	Voltage transformer rate UrAt (*) $(1 \sim 9999$ represents voltage ratio $0.1 \sim 999.9$)	16bit with signal	1	R/W	
000AH	Disp	Rotating display time(s))	16bit with signal	1	R/W	

Parameter address	Parameter code	Instructions of parameters	Data type	Data length Word	R/W property		
000BH	B.LCD	Backlight time control(s)	16bit with signal	1	R/W		
000CH	Endian	Single-precision floating point size end mode (0: ABCD;1: CDAB;2: BADC;3: DCBA;)	16bit with signal	1	R/W		
002CH	Protocol	Protocol switching (1: DL/T645-2007;2: n.2;5: n.1;6: E.1;7:o.1)	16bit with signal	1	R/W		
002DH	bAud	Communication baud rate bAud (0: 1200;1: 2400;2: 4800; 3:9600; 4:19200)	16bit with signal	1	R/W		
002EH	Addr	Communication address Addr (1 \sim 247)	16bit with signal	1	R/W		
	Electricity data on the secondary side						
2000H	Uab						
2002H	Ubc	Three phase line voltage data, Unit V(×0.1V)	Single- precision floating point	2	R		
2004H	Uca						
2006H	Ua	Three phase	Single- precision floating point	2	R		
2008H	Ub	V V(×0.1V) (Invalid for three phase)	Single- precision	2			
200AH	Uc		, floating point	Z	к		

200CH	la		Single- precision floating point	2	R
200EH	lb	Three phase current data, Unit A(×0.001A)	Single- precision floating point	2	R
2010H	lc		Single- precision floating point	2	R
2012H	Pt	Combined active power, Unit W(×0.1W)	Single- precision floating point	2	R
2014H	Pa	A phase active power, Unit W(×0.1W)	Single- precision floating point	2	R
2016H	Pb	B phase active power, Unit W(×0.1W) (Invalid for three phase three phase)	Single- precision floating point	2	R
2018H	Pc	C phase active power, Unit W(×0.1W)	Single- precision floating point	2	R
201AH	Qt	Combined reactive power, Unit var(×0.1var)	Single- precision floating point	2	R
201CH	Qa	A phase reactive power, Unit var(×0.1var)	Single- precision floating point	2	R
201EH	Qb	B phase reactive power, Unit var(×0.1 var) (Invalid for three phase three phase)	Single- precision floating point	2	R
2020H	Qc	C phase reactive power, Unit var(×0.1var)	Single- precision floating point	2	R
202AH	PFt	Combined power factor (positive number: Inductive, negative number: capacitive) (×0.001)	Single- precision floating point	2	R

Parameter address	Parameter code	Instructions of parameters	Data type	Data length Word	R/W property
202CH	PFa	A phase power factor (positive number: Inductive, negative number: capacitive) (Invalid for three phase three phase) (×0.001)	Single- precision floating point	2	R
202EH	PFb	B phase power factor (positive number: inductive, negative number: capacitive) (Invalid for three phase three phase) (×0.001)	Single- precision floating point	2	R
2030H	PFc	C phase power factor (positive number: inductive, negative number: capacitive) (Invalid for three phase three phase) (×0.001)	Single- precision floating point	2	R
2044H	Freq	Frequency, Unit Hz(×0.01Hz)	Single- precision floating point	2	R
		Power secondary sid	le data		
101EH	ImpEp	(current) positive total active energy	Single- precision floating point	2	R
1028H	ExpEp	(current) negative total active energy	Single- precision floating point	2	R
1032H	Q1Eq	(current) Total reactive energy of the first quadrant	Single- precision floating point	2	R
103CH	Q2Eq	(current) Total reactive energy of the second quadrant	Single- precision floating point	2	R

1046H	Q3Eq	(current) Total reactive energy of the third quadrant	Single- precision floating point	2	R
1050H	Q4Eq	(current) Total reactive energy of the fourth quadrant	Single- precision floating point	2	R

NOTE

When the ratio of the voltage transformer is 1, the data of read voltage transformer ratio register UrAt is 10. When the ratio of voltage transformer is 1, ignore the above table (UrAt×0.1).

-Single-precision floating point adopts standard IEEE754 format, total 32 bit(4 word). The single-precision floating point mode is assumed to be ABCD (high type in the front, low byte behind).

•The table only give the regular correspondence address. If you need the primary data address and other addresses, you can call for the detailed communication protocol.

7.2 Read data copy

Assume the voltage ratio is 1.0, the current ratio is 20, single-precision floating point mode (0: ABCD), the example of read dada is as follows:

Read A phase voltage Ua(2006H):

Read command frame: 01 03 20 06 00 02 2F CA (hexadecimal, 01 is the table address, 03 is read command, 2006 is A phase voltage address, 0002 is single-precision floating point data length, 2PCA is CRC16 check code).

Return frame: 01 03 04 45 09 70 00 1A FD (01 is table address, 03 is read command, 04 is read register return data number, 45097000 is data(single-precision floating point))1APD is CRC16 check code)Ua measurement=0x45097000(single-precision floating point)×voltage ratio×0.1=2199(decimalist) × $(10\times0.1) \times 0.1=219.9V$.

Read A phase current la(200CH):

Read command frame: 01 03 20 0C 00 02 0F C8 (hexadecimal, 01 is table address, 03 is read command, 200C is A phase current address,0002 is single-precision floating point data length, 0FC8 is CRC16 check code).

Three-Phase Meter

Return frame: 01 03 04 45 9C 38 00 3C D1 (01 is table address, 03 is read command, 04 is read register return data number, 459C3800 is floating data, 3CD1 is CRC16 check code)la measurement=0x459C3800(single precision floating point)×current ratio×0.001=4999(decimalist)×20×0.001=99.98A.

Read current positive active total energy ImpEp (101EH):

Read command frame: 01 03 10 1E 00 02 A0 CD (hexadecimal, 01 is table address, 03 is read command, 101E is current positive total active energy address, 0002 is single-precision floating point data length, A0CD is CRC16 check code).

Return frame: 01 03 04 3F F1 EB 85 28 87(01 is table address, 03 is read command, 04 is read register return data number, 3FF1EB85 is floating data, 2887 is CRC16 check code) ImpEp measurement=0x3FF1EB85(single-precision floating point) × current ratio × voltage ratio=1.89(decimalist)×20×(10×0.1)= 37.8kWH.

Read current ratio Irat(0006H):

Write command frame: 01 10 00 06 00 01 02 00 0A 26 31 (hexadecimal, 01 is table address, 10 is read command, 0006 is current ratio address, 0001 is write register return data number, 02 is write register data length, 000A is current ratio data (16-bit signed integer type), 2631 is CRC16 check code).

Return frame: 01 10 00 06 00 01 E1 C8 (01 is table address, 10 is read command, 0006 is current ratio address, 0001 is register number, E1C8 is CRC16 check code).

Write Big/Little Endian setting (000CH):

Some PLC data type float follows the mode " high byte low address, low type high address" (single-precision floating point mode 3:DCBA). The following example shows how to change the single-precision floating point mode to 3: DCBA.

Write command frame:01 10 00 0C 00 01 02 00 03 E6 9D (hexadecimal, 01 is table address, 10 is read command, 000C is current ratio address, 0001 is write register umber, 02 is write register data-length, 0003 is Big/Little Endian setting data (16 bit singed integer type), E6 9D is CRC16 check code).

Return frame: 01 10 00 0C 00 01 C1 CA (01 is table address, 10 is read command, 000C is current ratio address, 0001 is register number, C1 CA is CRC16 check code).

8. Troubleshooting

Problems	Reason	Troubleshooting	
No display	 The meter wiring is incorrect. The voltage supplied to the meter is abnormal. 	 If the wiring is incorrect, please follow the correct wiring instruction (see wiring diagram). If the power supply voltage is abnormal, please supply power according to the voltage range specification on Manuel. 	
		3. If it is not the above problem, please contact the local supplier.	
Current display 0	CT current sampling is abnormal.	Check whether the CT wiring is correct and stable.	
Significant difference between meter and real value	 Wrong connection, voltage and current are connected to wrong Pin. CT positive and negative pole are connect correctly; Noted: please obverse the power of Pa, Pb, Pc, if have negative value that means abnormal (expect some special device). 	 If connection is wrong, please refers to the correct connection according to wiring diagram. If not above issue, please contact local supplier. 	
RS485 Communication Abnormal	 The RS485 communication cable is open, shorted, or connected reversely. The address, baud rate, and data bit check digit of the instrument does not match the host. The end of RS485 communication cable has not been matched with resistance (when the distance over than100 meters) 	 If there is a problem with the communication cable, please replace the communication cable. Set the address, baud rate and data bit check digit of the meter is same as host, then set the operation to be "parameter settings". If the communication distance is over than 150 meters, and the communication parameter settings are the same as the host computer, but cannot be communicated, then please lower the baud rate or add a resistance of 120Ω at the start terminal and ending terminal. 	

9. Interface description

There are two interfaces respectively.

9.1 Type 1 (two screen buttons)

NO	Definition	Function	Remarks	
1	RS485A	RS485 Differential signal +		
2	RS485A	RS485 Differential signal +	Wired monitoring or Inverter cascade monitoring	
3	RS485B	RS485 Differential signal-		
4	RS485B	RS485 Differential signal-		
5	Electricity Meter, RS485A	Meter RS485 Differential signal +	Cable connection meter	
6	Electricity Meter, RS485B	Power Meter RS485 Differential signal-	Cable connection meter	
7	GND.S	RS485 signal ground	/	
8	DRM0	Remote shutdown signal		
9	DRM1/5	/		
10	DRM2/6	/	DRMS joggle	
11	DRM3/7	/		
12	DRM4/8	/		
13	GND.S	Communication to	/	
14-16	empty PIN	N/A	N/A	

9.2 Type 2 (four screen buttons)

Network cable crystal head- -multi-function communication interface.

	1 8	NO	Colour	Function
		1	White orange	RS485B-
ТОР		2	Orange	RS485A+
		3	White green	RS485A+
		4	Blue	RS485A+
FRONT		5	White blue	RS485B-
		6	Green	RS485B-
		7	White brown	NC
		8	Brown	NC